Cybernetics Wiki
Advertisement
Файл:Lorenz-03.jpg

решение системы, r=0.3

Файл:Lorenz-18.jpg

решение системы, r=1.8

Файл:Lorenz-37.jpg

решение системы, r=3.7

Файл:Lorenz-100.jpg

решение системы, r=10.0

Файл:Lorenz-16.jpg

решение системы, r=16.0

Файл:Lorenz-2406.jpg

решение системы, r=24.06

Файл:Lorenz-28.jpg

решение системы, r=28.0. Собственно это и есть аттрактор Лоренца

Файл:Lorenz-1000.jpg

решение системы, r=100.0, виден режим автоколебаний в системе


Аттрактор Лоренца (от англ. to attract - притягивать) ― компактное инвариантное множество в трехмерном фазовом пространстве гладкого потока, которое имеет определённую сложную топологическую структуру и является асимптотически устойчивым, оно устойчиво по Ляпунову и все траектории из некоторой окрестности стремятся к при (отсюда название).

Аттрактор Лоренца был найден в численных экспериментах Лоренца, исследовавшего поведение траекторий нелинейной системы:

при следующих значениях параметров: , , . Эта система вначале была введена как первое нетривиальное галёркинское приближение для задачи о конвекции морской воды в плоском слое, чем и мотивировался выбор значений σ, r и b, но она возникает также и в других физических вопросах и моделях:

  • Конвекция в замкнутой петле
  • Вращение водяного колеса
  • Модель одномодового лазера
  • Диссипативный осциллятор с инерционной нелинейностью.

Исходная гидродинамическая система уравнений:

,

где - скорость течения, - температура жидкости, - температура верхней границы (на нижней поддерживается ), - плотность, - давление, - сила тяжести, - соответственно коэффициент теплового расширения, температуропроводности и кинематической вязкости.

В задаче о конвекции модель возникает при разложении скорости течения и температуры в двумерные ряды Фурье и последующей их «обрезки» с точностью до первых-вторых гармоник. Кроме того, приведённая полная система уравнений гидродинамики записывается в приближении Буссинеска. Обрезка рядов в определённой мере оправдана, т.к. Сольцмен в своих работах продемонстрировал отсутствие каких-либо интересных особенностей в поведении большинства гармоник.

Применимость и соответствие реальности[]

Обозначим физический смысл переменных и параметров в системе уравнений применительно к упомянутым задачам:

  • Конвекция в плоском слое. x отвечает за скорость вращения водяных валов, y и z — за распределение температуры по горизонтали и вертикали. r — нормированное число Рэлея, σ — число Прандтля (отношение коэффициента кинематической вязкости к коэффициенту температуропроводности), b — содержит информацию о геометрии конвективной ячейки.
  • Конвекция в замкнутой петле. x — скорость течения, y — отклонение температуры от средней в точке, отстоящей от нижней точки петли на π/2, z — то же, но в нижней точке. Подведение тепла производится в нижней точке.
  • Вращение водяного колеса. Рассматривается задача о колесе, на ободе которого укреплены корзины с отверстиями в дне. Сверху на колесо симметрично относительно оси вращения льётся сплошной поток воды. Задача равнозначна предыдущей, перевернутой «вверх ногами», с заменой температуры на плотность распределения массы воды в корзинах по ободу.
  • Одномодовый лазер. x — амплитуда волн в резонаторе лазера, y — поляризация, z — инверсия населённостей энергетических уровней; b, σ — отношение коэффициентов релаксации инверсии и поля к коэффициенту релаксации поляризации, r — интенсивность накачки.

Стоит указать, что применительно к задаче о конвекции модель Лоренца является очень грубым приближением, весьма далёким от реальности. Более-менее адекватное соответствие существует в области регулярных режимов, где устойчивые решения качественно отображают экспериментально наблюдаемую картину равномерно вращающихся конвективных валов (Ячейки Бенара). Хаотический режим, присущий модели, не описывает турбулентной конвекции в силу существенной обрезки исходных тригонометрических рядов.

Интересным является существенно большая точность модели при некоторой её модификации, применяемая в частности для описания конвекции в слое, подвергаемом вибрации в вертикальном направлении либо переменному тепловому воздействию. Такие изменения внешних условий приводят к модулированию коэффициентов в уравнениях. При этом высокочастотные Фурье-компоненты температуры и скорости существенно подавляются, улучшая соответствие модели Лоренца и реальной системы.

Примечательно везение Лоренца при выборе значения параметра , так как система приходит к странному аттрактору только при значениях, больших 24.74, при меньших поведение оказывается совершенно иным.

Поведение решения системы[]

Рассмотрим изменения в поведении решения системы Лоренца при различных значениях параметра r. На иллюстрациях к статье приведены результаты численного моделирования для точек с начальными координатами (10,10,10) и (-10,-10,10). Моделирование производилось с помощью приведённой ниже программы, написанной на языке Фортран, построение графиков по полученным таблицам — за счёт слабых графических возможностей Фортрана с помощью Compaq Array Viewer.

  • — аттрактором является начало координат, других устойчивых точек нет.
  • — траектории спирально приближаются (это соответствует наличию затухающих колебаний) к двум точкам, положение которых определяется формулами:

Эти точки определяют состояния стационарного режима конвекции, когда в слое формируется структура из вращающихся валов жидкости.

  • — если траектория выходит из начала координат, то, совершив полный оборот вокруг одной из устойчивых точек, она вернется обратно в начальную точку — возникают две гомоклинические петли (Понятие гомоклинической траектории означает, что она выходит и приходит в одно и то же положение равновесия).
  • — в зависимости от направления траектория приходит в одну из двух устойчивых точек. Гомоклинические петли перерождаются в неустойчивые предельные циклы, также возникает семейство сложно устроенных траекторий, не являющееся аттрактором, а скорее наоборот, отталкивающее от себя траектории. Иногда по аналогии эта структура называется «странным репеллером» (англ. to repel - отталкивать).
  • — траектории теперь ведут не к устойчивым точкам, а асимптотически приближаются к неустойчивым предельным циклам — возникает собственно аттрактор Лоренца. Однако обе устойчивые точки сохраняются вплоть до значений .

При больших значениях параметра траектория претерпевает серезные изменения. Шильников и Каплан показали, что при очень больших r система переходит в режим автоколебаний, при этом, если уменьшать параметр, будет наблюдаться переход к хаосу через последовательность удвоений периода колебаний.

Значимость модели[]

Модель Лоренца является реальным физическим примером динамических систем с хаотическим поведением, в отличие от различных искусственно сконструированных отображений («зуб пилы»,«тент»,преобразование пекаря, отображение Фейгенбаума и др.).

Программы, моделирующие поведение системы Лоренца[]

Borland C

#include <graphics.h>
#include <conio.h>
void main()
{
    double x = 3.051522, y = 1.582542, z = 15.62388, x1, y1, z1;
    double dt = 0.0001;
    int a = 5, b = 15, c = 1;
    int gd=DETECT, gm;
    initgraph(&gd, &gm, "C:\\BORLANDC\\BGI");
    do {
	x1 = x + a*(-x+y)*dt;
	y1 = y + (b*x-y-z*x)*dt;
	z1 = z + (-c*z+x*y)*dt;
	x = x1;	y = y1;	z = z1;
	putpixel((int)(19.3*(y - x*0.292893) + 320),
		 (int)(-11*(z + x*0.292893) + 392), 9);
    } while (!kbhit());
    closegraph();
}

Borland Pascal

Program Lorenz;
Uses CRT, Graph;
Const
  x: Real = 3.051522;
  y: Real = 1.582542;
  z: Real = 15.62388;
  dt = 0.0001;
  a = 5;
  b = 15;
  c = 1;
Var
  gd, gm: Integer;
  x1, y1, z1: Real;
Begin
  gd:=Detect;
  InitGraph(gd, gm, 'c:\bp\bgi');
  While not KeyPressed Do Begin
      x1 := x + a*(-x+y)*dt;
      y1 := y + (b*x-y-z*x)*dt;
      z1 := z + (-c*z+x*y)*dt;
      x := x1;
      y := y1;
      z := z1;
      PutPixel(Round(19.3*(y - x*0.292893) + 320),
               Round(-11*(z + x*0.292893) + 392), 9);
    End;
    CloseGraph;
    ReadKey;
End.

FORTRAN

program LorenzSystem

real,parameter::sigma=10
real,parameter::r=28
real,parameter::b=2.666666
real,parameter::dt=.01
integer,parameter::n=1000

real x,y,z

open(1,file='result.txt',form='formatted',status='replace',action='write')

x=10.;y=10.;z=10.

do i=1,n,1
    x1=x+sigma*(y-x)*dt
    y1=y+(r*x-x*z-y)*dt
    z1=z+(x*y-b*z)*dt
    x=x1
    y=y1
    z=z1
    write(1,*)x,y,z
enddo

print *,'Done'

 close(1)

end program LorenzSystem

QBASIC/FreeBASIC("fbc -lang qb")

DIM x, y, z, dt, x1, y1, z1 AS SINGLE
DIM a, b, c AS INTEGER
x = 3.051522: y = 1.582542: z = 15.62388: dt = 0.0001
a = 5: b = 15: c = 1
SCREEN 12
PRINT "Press Esc to quit"
WHILE INKEY$ <> CHR$(27)
    x1 = x + a * (-x + y) * dt
    y1 = y + (b * x - y - z * x) * dt
    z1 = z + (-c * z + x * y) * dt
    x = x1
    y = y1
    z = z1
    PSET ((19.3 * (y - x * .292893) + 300), (-11 * (z + x * .292893) + 360)), 9
WEND
END

Литература[]

  • Кузнецов С. П., Лекция 3. Система Лоренца; Лекция 4. Динамика системы Лоренца. // Динамический хаос (курс лекций). — М.: Физматлит, 2001.
  • Saltzman B. Finite amplitude free convection as an initial value problem. // Journal of the atmospheric science, №7, 1962 – p. 329 – 341.
  • Лоренц Э. Детерминированное непериодическое движение // Странные аттракторы. — М., 1981. — С. 88-116.

См. также[]

Advertisement