Cybernetics Wiki
Advertisement
Файл:Butterworth filter bode plot ru.png

ЛАФЧХ фильтра Баттерворта первого порядка

Логарифмическая амплитудно-фазовая частотная характеристика (ЛАФЧХ) — представление частотного отклика линейной стационарной системы в логарифмическом масштабе.

ЛАФЧХ строится в виде двух графиков: логарифмической амплитудно-частотной характеристики и фазо-частотной характеристики, которые обычно располагаются друг под другом.

Анализ систем с помощью ЛАФЧХ весьма прост и удобен, поэтому находит широкое применение в различных отраслях техники, таких как цифровая обработка сигналов, электротехника и теория управления.

Названия[]

В западной литературе используется название диаграмма Боде или график Боде, по имени выдающегося инженера Хенрика Боде (англ. Hendrik Wade Bode ).

В инженерных кругах название обычно сокращается до ЛАХ.

В пакете прикладных программ для инженерных вычислений MATLAB для построения ЛАФЧХ используется функция bode.

Использование[]

Свойства и особенности[]

Если передаточная функция системы является рациональной, тогда ЛАФЧХ может быть аппроксимирована прямыми линиями. Это удобно при рисовании ЛАФЧХ вручную, а также при составлении ЛАФЧХ простых систем.

С помощью ЛАФЧХ удобно проводить синтез систем систем управления, а также цифровых и аналоговых фильтров: в соответствии с определёнными критериями качества строится желаемая ЛАФЧХ, аппроксимированная с помощью прямых линий, которая затем разбивается на ЛАФЧХ отдельных элементарных звеньев, из которых восстанавливается передаточная функция системы (регулятора) или фильтра.

ЛАЧХ[]

На графике ЛАЧХ абсциссой является частота в логарифмическом масштабе, по оси ординат отложена амплитуда передаточной функции в децибелах.

Представление АЧХ в логарифмическом масштабе упрощает построение характеристик сложных систем, так как позволяет заменить операцию перемножения АЧХ звеньев сложением, что вытекает из свойства логарифма: .

ФЧХ[]

На графике фазо-частотной характеристики абсциссой является частота в логарифмическом масштабе, по оси ординат отложен фазовый сдвиг выходного сигнала системы относительно входного (обычно в градусах).

Также возможен вариант, когда по оси ординат откладывается фазовый сдвиг в логарифмическом масштабе, в этом случае характеристика будет называться ЛФЧХ.

Случай минимально-фазовых систем[]

Амлитуда и фаза системы редко меняются независимо друг от друга — при изменении амплитуды меняется и фаза и наоборот. Для минимально-фазовых систем ЛФЧХ и ЛАЧХ могут быть однозначно определены друг из друга с помощью преобразования Гильберта.

Построение ЛАФЧХ[]

Основная идея основывается на следующем математическом правиле сложения логарифмов. Если передаточную функцию можно представить в виде дробно-рациональной функции

,

то:

После разбиения передаточной функции на элементарные звенья можно построить ЛАФЧХ каждого отдельного звена, а результирующую ЛАФЧХ получить простым сложением.

Аппроксимация ЛАЧХ прямыми линиями[]

При построении ЛАЧХ для оси ординат обычно используется масштаб , то есть значение АЧХ, равное 100 превращается в 40 децибел шкалы ЛАЧХ. Если передаточная функция имеет вид:

где  — комплексная переменная, которую можно связать с частотой, используя следующую формальную замену: , и  — константы, а  — передаточная функция. Тогда построить ЛАЧХ можно используя следующие правила:
  • в каждом , где (нуль), наклон линии увеличивается на дБ на декаду.
  • в каждом , где (полюс), наклон линии уменьшается на дБ на декаду.
  • Начальное значение графика можно найти простой подстановкой значения круговой частоты в передаточную функцию.
  • Начальный наклон графика зависит от числа и порядка нулей и полюсов, которые меньше начального значения частоты. Он может быть найден с помощью первых двух правил.
  • В случае наличия комплексно-сопряжённых нулей или полюсов необходимо использовать звенья второго порядка, , наклон менятся в точке сразу на дБ на декаду.

Корректировка аппроксимированной ЛАЧХ[]

Для корректировки ЛАЧХ, аппроксимированную прямыми линиями надо:

  • в каждом нуле поставить точку на дБ выше линии ( дБ для двух комплексно-сопряжённых нулей)
  • в каждом полюсе поставить точку на дБ ниже линии ( дБ для двух комплексно-сопряжённых полюсов)
  • плавно соединить точки, используя прямые линии в качестве асимптот

Аппроксимация ФЧХ[]

Для построения аппроксимированной ФЧХ используют запись передаточной функции в том же виде, что и для ЛАЧХ:

Основной принцип построения ФЧХ — начертить отдельные графики для каждого полюса или нуля, затем сложив их. Точная кривая фазо-частотной характеристики задаётся уравнением:

Для того, чтобы нарисовать ФЧХ для каждого полюса или нуля, используют следующие правила:

  • если положительно, начать линию (с нулевым наклоном) в 0 градусов,
  • если отрицательно, начать линию (с нулевым наклоном) в 180 градусов,
  • для нуля сделать наклон линии вверх на ( для комплексно сопряжённого) градусов на декаду начиная с ,
  • для полюса наклонить линию вниз на ( для комплексно сопряжённого) градусов на декаду начиная с ,
  • обнулить наклон снова когда фаза изменится на градусов для простого нуля или полюса и на градусов для комплексно-сопряжённого нуля или полюса,
  • сложить все линии и нарисовать результирующую.

Анализ устойчивости по ЛАФЧХ[]


ЛАФЧХ некоторых элементарных звеньев[]

Ниже представлена таблица, в которую помещены передаточные функции и ЛАФЧХ некоторых типовых элементарных звеньев. Большая часть линейных стационарных систем может быть представлена в виде соединения таких звеньев. В таблице  — комплексная переменная.

Звено Передаточная функция ЛАФЧХ Примечания
1 пропорциональное Файл:Gain bode.png
2 идеальное интегрирующее[1] Файл:Integ bode.png
3 идеальное дифференцирующее[2] Файл:Diff bode.png
4 апериодическое
(реальное интегрирующее)
Файл:Aper bode.png
5 колебательное Файл:Aper 2.png
6 неустойчивое
апериодическое
Файл:Unstaper bode.png

неминимально-фазовое
7 форсирующее Файл:For bode.png
8 форсирующее
второго
порядка
Файл:For2 bode.png
9 чистого
запаздывание
Файл:Delay bode.png

Примечания[]

  1. Интегратор
  2. Дифференциатор


См. также[]


Advertisement