Cybernetics Wiki
Advertisement

EM-алгоритм (англ. expectation-maximization ) - алгоритм, используемый в математической статистике для нахождения оценок максимального правдоподобия параметров вероятностных моделей, в случае, когда модель зависит от некоторых скрытых переменных. Каждая итерация алгоритма состоит из двух шагов. На E-шаге (expectation) вычисляется ожидаемое значение функции правдоподобия, при этом скрытые переменные рассматриваются как наблюдаемые. На M-шаге (maximization) вычисляется оценка максимального правдоподобия, таким образом увеличивается ожидаемое правдоподобие, вычисляемое на E-шаге. Затем это значение используется для E-шага на следующей итерации. Алгоритм выполняется до сходимости.

Часто EM-алгоритм используют для разделения смеси гауссиан.

Описание алгоритма[]

Пусть - некоторые из значений наблюдаемых переменных, а - скрытые переменные. Вместе и образуют полный набор данных. Вообще, может быть некоторой подсказкой, которая облегчает решение проблемы в случае, если она известна. Например, если имеется смесь распределений, функция правдоподобия легко выражается через параметры отдельных распределений смеси.

Положим - плотность вероятности (в непрерывном случае) или функция вероятности (в дискретном случае) полного набора данных с параметрами : . Эту функцию можно понимать как правдоподобие всей модели, если рассматривать её как функцию параметров . Заметим, что условное распределение скрытой компоненты при некотором наблюдении и фиксированном наборе параметров может быть выражено так:

,

используя расширенную формулу Байеса и формулу полной вероятности. Таким образом, нам необходимо знать только распределение наблюдаемой компоненты при фиксированной скрытой и вероятности скрытых данных .

EM-алгоритм итеративно улучшает начальную оценку , вычисляя новые значения оценок и так далее. На каждом шаге переход к от выполняется следующим образом:

где - матожидание логарифма правдоподобия. Другими словами, мы не можем сразу вычислить точное правдоподобие, но по известным данным () мы пожем найти апостериорную оценку вероятностей для различных значений скрытых переменных . Для каждого набора значений и параметров мы можем вычислить матожидание функции правдоподобия по данному набору . Оно зависит от предыдущего значения , потому что это значение влияет на вероятности скрытых переменных .

вычисляется следующим образом:

то есть это условное матожидание при условии .

Другими словами, - это значение, маскимизирующее (M) условное матожидание (E) логарифма правдоподобия при данных значениях наблюдаемых переменных и предыдущем значении параметров. В непрерывном случае значение вычисляется так:


Примеры использования[]

Ссылки[]

Advertisement